Blow-up set for a superlinear heat equation and pointedness of the initial data

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial blow-up solution of a semilinear heat equation

We study the existence and uniqueness of a maximal solution of equation ut − ∆u + f(u) = 0 in Ω× (0,∞), where Ω is a domain with a non-empty compact boundary, which satisfies u = g on ∂Ω × (0,∞), assuming that g and f are given continuous functions and f is also convex, nondecreasing, f(0) = 0 and verifies Keller-Osserman condition. We show that if the boundary of Ω satisfies the parabolic Wien...

متن کامل

Blow up of Solutions with Positive Initial Energy for the Nonlocal Semilinear Heat Equation

In this paper, we investigate a nonlocal semilinear heat equation with homogeneous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions with positive initial energy that blow up in finite time.

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

A blow-up result for nonlinear generalized heat equation

Available online xxxx Keywords: Nonlinear heat equation Blow up Sobolev spaces with variable exponents a b s t r a c t In this paper we consider a nonlinear heat equation with nonlinearities of variable-exponent type. We show that any solution with nontrivial initial datum blows up in finite time. We also give a two-dimension numerical example to illustrate our result.

متن کامل

A note on blow up of solutions of a quasilinear heat equation with vanishing initial energy

In this work we consider an initial boundary value problem related to the equation ut − div (|∇u|m−2∇u) = f (u) and prove, under suitable conditions on f, a blow up result for solutions with vanishing or negative initial energy.  2002 Elsevier Science (USA). All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2014

ISSN: 1078-0947

DOI: 10.3934/dcds.2014.34.4617